GCE A LEVEL MARKING SCHEME

SUMMER 2019

A LEVEL
CHEMISTRY - COMPONENT 2
A410U20-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

COMPONENT 2: ORGANIC CHEMISTRY AND ANALYSIS

MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.
One tick must equate to one mark, apart from extended response questions where a level of response mark scheme is applied.
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.
Extended response questions
A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules
All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer
Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

| cao | $=\quad$ correct answer only |
| :--- | :--- | :--- |
| ecf | $=\quad$ error carried forward |

bod $=$ benefit of doubt
Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
7	(a)			M_{r} urea $=60$ and M_{r} melamine $=126$ (1) both needed atom economy $=\frac{126 \times 100}{6 \times 60}=35$	1	1		2		
	(b)		$\begin{equation*} \text { percentage }=\frac{84 \times 100}{126}=66.7 / 67 \tag{1} \end{equation*}$ ecf possible from incorrect M_{r} in (a)	1			1			
			Section A total	10	4	1	15	0	5	

Section B

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
8	(a)	(i)			1			1		
		(ii)	attack by a chlorine radical/atom on a chlorinated alkane product		1		1			
		(iii)	award (1) for any of following - $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C} \cdot$ radical is the more stable - E_{a} for the reaction is lower - formation of 2-chloro-2-methylpropane is faster			1	1			
		(iv)	 all the protons are equivalent (1)		1	1	2			
		(v)	award (1) for either of following $\begin{aligned} & \left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}+\frac{13}{2} \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{C}_{4} \mathrm{H}_{10}+\frac{13}{2} \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O} \end{aligned}$		1		1			

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
(d)	(i)			award (1) for any of following - needs high temperature - needs lots of energy - toxic products	1			1		
	(ii)	I	a reaction that involves decomposition by water	1			1			
		II	filter, wash (with water) and dry		1		1		1	
		III	award (1) for either of following - melts at a lower temperature - melts over a range of temperatures	1			1		1	
		IV	decarboxylation do not accept elimination		1		1			
		V	overall percentage yield $=\frac{90}{100} \times \frac{50}{100}=45 \%$ (1) number of moles of CS gas $=\frac{75000}{189}=396.8 \mathrm{~mol}(1)$ 45% yield therefore $396.8 \times 0.45=178.56 \mathrm{~mol}(1)$ mass of (2-phenyl)ethene $=178.56 \times 139=24.8 \mathrm{~kg}$ (1) final answer must be given to 3 sig figs	1	3		4	1		
			Question 8 total	5	12	4	21	3	2	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
9	(a)			Indicative content - O-H bond at 3200-3500 $\mathrm{cm}^{-1} \Rightarrow \mathbf{A}$ - $\quad \mathrm{C}-\mathrm{Br}$ bond at $500-600 \mathrm{~cm}^{-1}$ and $\mathrm{C}=\mathrm{C}$ bond at $1620-1670 \mathrm{~cm}^{-1} \Rightarrow \mathrm{D}$ - $\quad \mathrm{C}-\mathrm{Br}$ bond at $500-600 \mathrm{~cm}^{-1}$ but no $\mathrm{C}=\mathrm{C}$ bond at $1620-1670 \mathrm{~cm}^{-1} \Rightarrow \mathrm{C}$ - $\quad \mathrm{C}=\mathrm{C}$ bond at $1620-1670 \mathrm{~cm}^{-1}$ but no $\mathrm{C}-\mathrm{Br}$ bond at $500-600 \mathrm{~cm}^{-1} \Rightarrow \mathrm{~F}$ - can't distinguish between compounds B and E credit any sensible alternative approaches to identify $\mathbf{A}, \mathbf{C}, \mathbf{D}$ and \mathbf{F} - B and \mathbf{E} both have aromatic protons at 6.5-8.0 δ - B will have two singlets in the peak area ratio of 3 (methyl) to 2 (methylene) (or 6 to 4) - E will have two singlets in the peak area ratio of 3 (methyl) to 1 (methylene) (or 6 to 2)	2	2	2	6		

Question				Marking details	Marks available						
				A01	AO2	AO3	Total	Maths	Prac		
10	(a)	(i)			electrophilic substitution	1			1		
		(ii)		award (1) for either of following - substitution occurs in other positions (giving other isomers) - polysubstitution			1	1			
		(iii)		alkaline potassium manganate(VII)		1		1			
		(iv)	1	$2 \mathrm{SO}_{2}+2 \mathrm{HCl}$		1		1			
			II	the other products are gaseous		1		1		1	
			III	award (1) for either of following - the acid may react with the ethanol (rather than with SOCl_{2}) - SOCl_{2} may react with the ethanol (rather than with the acid)			1	1			
		(v)		it contains the linkage	1			1			
		(vi)		award (1) for either of following - NaNO_{2} and HCl - $\mathrm{HNO}_{2} / \mathrm{HONO}$		1		1			
		(vii)					1	1			

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
	(viii)	I		there will be two signals (1) these are in the peak area ratio 12 (aliphatic):4 (aromatic) [or 3 (aliphatic): 1 (aromatic)] (1)		2		2		
		II	there will be four signals (1) award (1) for identifying all four $\begin{aligned} & \mathrm{CH}_{3} \\ & \mathrm{C}=\mathrm{O} \end{aligned}$ aromatic $\mathrm{C}-\mathrm{C}$ aromatic C to aliphatic C		2		2			
(b)	(i)				1		1			
	(ii)	I	relative mass of ethanoic anhydride $=102.09$ (1) volume needed $=\frac{102.09 \times 0.250}{1.08}=23.6 \mathrm{~cm}^{3}(1)$	1	1		2	1		
		II	$\frac{0.250 \times 90 \times 163}{100}=36.7$		1		1			

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
	(iii)		e.g. alkyl / aryl groups must be the same		1		1		
		Question 10 total	3	12	3	18	1	1	

Question				Marking details	Marks available						
				A01	AO2	AO3	Total	Maths	Prac		
11	(a)	(i)			award (1) for either of following $\begin{aligned} & \mathrm{C}_{6} \mathrm{H}_{14} \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}+4 \mathrm{H}_{2} \\ & \mathrm{C}_{6} \mathrm{H}_{14} \rightarrow \square+4 \mathrm{H}_{2} \end{aligned}$		1		1		
		(ii)	I	remove stopper, (open tap), run off lower layer, (close tap)	1			1		1	
			II	(simple) distillation (1) water bath / electric heating mantle (1)	2			2		2	

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(b)	(i)		$\begin{align*} & \mathrm{n}=\frac{p V}{R T} \quad \text { (1) } \tag{1}\\ & \mathrm{n}=\frac{1.01 \times 10^{5} \times 4.31}{1000 \times 8.31 \times 312}=0.168 \mathrm{~mol} \tag{1} \end{align*}$ $3 \times \mathrm{C}=\mathrm{C}$ bonds present therefore $\frac{0.168}{3}=0.056 \mathrm{~mol}$ of ectocarpene (1) $\begin{equation*} M_{r}=\frac{8.29}{0.056}=148 \tag{1} \end{equation*}$		4		4	2	
	(ii)	molecular formula $\mathrm{C}_{11} \mathrm{H}_{16}$ (1) award (1) for or any aromatic compound where side chains \mathbf{X} and \mathbf{Y} total $\mathrm{C}_{5} \mathrm{H}_{11}$			2	2			

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(c)	(i)					1	1		
	(ii)	silver mirror (1) an aldehyde group is present and this reduces Ag^{+}ions to Ag (1)	1	1		2		1	
(d)		$\begin{equation*} \left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{COOH} \tag{1} \end{equation*}$	1		1	2			
		Question 11 total	5	6	4	15	2	4	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
12	(a)			Indicative content - compounds \mathbf{A} and \mathbf{B} - van der Waals forces only, no hydrogen bonding (between molecules) - compounds \mathbf{C}, \mathbf{D} and \mathbf{E} have hydrogen bonding - stronger than van der Waals forces in \mathbf{A} and \mathbf{B} - boiling temperatures of \mathbf{A} and \mathbf{B} are lower than \mathbf{C}, \mathbf{D} and \mathbf{E} - boiling temperature of \mathbf{A} is lower that of \mathbf{B} because of weaker intermolecular / van der Waals force due to 'weaker' packing - the more branched the chain, the lower the boiling temperature because packing / van der Waals forces are weaker - the straight chain isomer \mathbf{E} has the highest boiling temperature because of stronger intermolecular forces due to more efficient packing	2	2	2	6		

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
(b)	(i)			award (1) for either of following - it reacts and is regenerated - it increases the rate of the reaction but is not used up		1		1		
	(ii)		it is a lone pair donor / proton acceptor	1			1			
	(iii)		elimination of water can occur as a result of the loss of ' OH ' and a proton from the carbon atoms on either side of the carbon atom with the -OH group bonded to it			1	1			
	(iv)		$1 \mathrm{~mol} / 24500 \mathrm{~cm}^{3}$ of hydrogen from 2 mol of the alcohol mass of 2 mol of the alcohol $=176.2 \mathrm{~g}$ (1) mass in the mixture $=\frac{125 \times 176.2}{24500}=0.899 / 0.90 \mathrm{~g}(1)$		2		2	1		
	(v)	I	peak B because this is the major product of the reaction		1		1			
		II	award (1) for any of following - measure the retention time with a known sample - add some 2-methylbutan-2-ol to the reaction product and see which peak becomes relatively larger - look up the retention time value			1	1		1	
	(vi)		by the elimination of one molecule of water from two molecules of the alcohol accept alternative answers based on correct mechanistic suggestions			1	1			

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
13	(a)			number of moles of NaOH used $=\frac{50.0 \times 0.500}{1000}=0.0250 \mathrm{~mol}$ (1) number of moles that reacted the diacetin $=0.0180 \mathrm{~mol}$ (1) 2 mol of NaOH react with 1 mol of diacetin therefore number of moles of diacetin is 0.0090 mol (1) $M_{\mathrm{r}} \text { of diacetin }=\frac{1.58}{0.0090}=175.5 / 176 \text { (1) }$	2			4		
	(b)	(i)	both of the groups attached to one of the carbon atoms in the $\mathrm{C}=\mathrm{C}$ double bond are the same	1			1			
		(ii)	e.g. credit any suitable structure			1	1			

Question	Marking details	Marks available					
		A01	AO2	AO3	Total	Maths	Prac
(iii)	award (1) for appropriate reagents - $\mathrm{KI} / \mathrm{NaOCl}$ - alkaline I_{2} yellow precipitate (1)	2			2		2
(iv)	award (1) for correct structure award (1) for correct chiral centre		1	1	2		

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
(c)	(i)			$\begin{align*} & f=\frac{c}{\lambda}=\frac{3.00 \times 10^{8}}{377 \times 10^{-9}}=7.96 \times 10^{14} \mathrm{~Hz}(1) \\ & E=h f=6.63 \times 10^{-34} \times 7.96 \times 10^{14}=5.28 \times 10^{-19} \mathrm{~J} \tag{1}\\ & \text { energy per mol }=6.02 \times 10^{23} \times 5.28 \times 10^{-19} \tag{1} \end{align*}$ 317.7 / $318 \mathrm{~kJ} \mathrm{~mol}^{-1}$		3		3	3	
	(ii)	1	bromine is decolourised (1) white precipitate (1)			2	2		2	
		II	electrophilic addition		1		1			
		III	4:1			1	1			
			Question 13 total	5	7	5	17	3	4	

COMPONENT 2: ORGANIC CHEMISTRY AND ANALYSIS
SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	Total	Maths	Prac
Section A	10	4	1	15	0	5
8	5	12	4	21	3	2
9	4	6	7	17	0	1
10	3	12	3	18	1	1
11	5	6	4	15	2	4
12	4	8	5	17	1	1
13	5	7	5	17	3	4
Totals	36	55	29	120	10	18

